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SUMMARY 

A general  theory i s  presented for analyzing minimal maneuvers of 
high-performance a i r c r a f t  i n  a v e r t i c a l  plane where t h e  ea r th  i s  assumed 
f la t  and t h e  g r a v i t a t i o n a l  f i e l d  uniform. 

The i n d i r e c t  methods of t he  calculus of va r i a t ions  are used and t h e  
v a r i a t i o n a l  problem formulated a s  a problem of Bolza type. The la t te r  
cons i s t s  of extremizing t h e  sum of a l i n e  i n t e g r a l  and of a func t iona l  
expression which depends upon t h e  end values of t h e  generalized coordi-  
na tes  of t he  a i r c r a f t .  Problems of e i t h e r  t h e  Lagrange type or t h e  Mayer 
type a r e  s tud ied  as p a r t i c u l a r  cases. 

For t h e  general  problem of simultaneously optimizing t h e  angle-of- 
a t t a c k  program and t h e  t h r u s t  program, so lu t ions  i n  a closed form are 
not possible .  Thus, t h e  in tegra t ion  of t h e  s e t  of Euler equations and 
constraining equations i s  t o  be performed by approximate methods. I n  
view of t he  f a c t  t h a t  t h e  var ia t iona l  problems of engineering i n t e r e s t  
a r e  of the  boundary-value type ( i . e . ,  problems with conditions prescr ibed 
i n  p a r t  a t  t he  i n i t i a l  point  and i n  p a r t  a t  t h e  f i n a l  po in t ) ,  the use of 
t r i a l  and e r r o r  procedures i s  i n  order. 

Under p a r t i c u l a r  assumptions, however, expressions i n  a closed form 
can be derived f o r  t h e  optimizing condition. 
tocronic  climbing technique of a rocket-powered a i r c r a f t  i s  r e a d i l y  com- 
puted i f  one neglects  t h e  induced drag with respec t  t o  t h e  z e r o - l i f t  
drag. 
minimum f u e l  consumption f o r  a turboje t  a i r c r a f t  i s  a l s o  r e a d i l y  computed 
by neglect ing cen t r ipe t a l  accelerat ions.  For these  problems t h e  rela- 
t i onsh ip  between a l t i t u d e  and Mach number i s  e x p l i c i t l y  calculated,  thus  
bypassing t h e  tedious energy-height method. 

A s  an  example, t h e  brachis-  

A s  another example, t h e  climbing technique of minimum t i m e  o r  of 

To complete t h e  paper, and t o  e s t a b l i s h  a l i n k  between ca lcu lus  of 
va r i a t ions  and ordinary theory of maxima and minima, some quasi-steady 
problems (i .e. ,  problems i n  which the acce lera t ion  terms are neglected) 
of Mayer type are considered. I n  pa r t i cu la r ,  t he  maximum range and the  
maximum endurance of a turboje t  a i r c r a f t  are inves t iga ted  f o r  constant  
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f l i g h t  a l t i t u d e  or  f o r  constant engine cont ro l  parameter. 
t i o n s  a r e  derived f o r  t h e  r a t i o  Of induced drag t o  z e r o - l i f t  drag and 
f o r  t h e  optimizing condition. 
extension of t h e  well-known r e s u l t s  Of t h e  low-speed f l i g h t  theory t o  
the case where an a r b i t r a r y  interdependence between z e r o - l i f t  drag coef- 
f i c i e n t ,  induced drag f a c t o r ,  t h r u s t ,  s p e c i f i c  f u e l  consumption, and 
Mach number i s  considered. 

Simple equa- 

These r e l a t i o n s  c o n s t i t u t e  an important 

\ 

... 

INTRODUCTION 

Several new problems of applied mathematics have a r i s e n  i n  t h e  anal-  
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y s i s  of t r a j e c t o r i e s  of high-speed aircraft  which cannot be handled by 
using conventional methods of performance analysis .  
problems is  t h e  determination of t h e  optimum climbing technique between 
one a l t i t u d e  and another. 

Typical among these  

I n  t h e  years preceding t h e  second World War, it was customary t o  
invest igate  the  f l i g h t  performances of conventional a i r c r a f t  by assuming 
t h a t  t h e  motion of the  center of grav i ty  i s  l o c a l l y  s t r a i g h t  and uniform. 
With t h e  above hypothesis s u b s t a n t i a l  s impl i f ica t ions  were made possible ,  
leading t o  simple a n a l y t i c a l  re la t ionships  of great usefulness f o r  design 
purposes. 7. 

For the case of a jet-propelled a i r c r a f t '  it becomes important t o  
account f o r  t h e  i n e r t i a  terms because of t h e  rap id  v a r i a t i o n  of t h e  
vector  veloci ty  with t h e  t i m e .  Thus, t h e  ana lys i s  of t h e  optimum f l i g h t  
performances s h i f t s  from the  domain of t h e  ordinary theory of maxima and 
minima into the  realm of t h e  calculus  of var ia t ions .  

m 

Simplified Climbing Problem f o r  Turbojet Ai rcraf t  

The problem of t h e  optimum climbing program f o r  t u r b o j e t  a i r c r a f t  
a t t r a c t e d  considerable i n t e r e s t  i n  t h e  years immediately following the  
second World War. The i n i t i a l  inves t iga t ions  were based on the  assumption 

'Some o f  the  e s s e n t i a l  differences between conventional a i r c r a f t  and 
jet-propelled a i r c r a f t  can be i l l u s t r a t e d  by means of t h e  following com- 
par ison which r e f e r s  t o  climbing f l i g h t :  
which must be t ransfer red  from sea l e v e l  and take-off speed t o  M = 0.5 
and h = 20,000 f e e t  
about one-f i f th  the  var ia t ion  i n  p o t e n t i a l  energy; on t h e  o ther  hand, 
f o r  a jet-propelled vehicle which must be t ransfer red  from sea l e v e l  and 
take-off speed t o  M = 2.5 and h = 50,000 f e e t  the  v a r i a t i o n  i n  k i n e t i c  
energy i s  about twice t h e  v a r i a t i o n  i n  p o t e n t i a l  energy. 

f o r  a piston-engine a i r c r a f t  

t h e  v a r i a t i o n  i n  k i n e t i c  energy per u n i t  mass i s  

% 

m 
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t h a t  t h e  mass of t h e  a i r c r a f t  is  ideal ly  a constant and t h e  c e n t r i p e t a l  
component of t h e  accelerat ion i s  disregarded, with only t h e  t a n g e n t i a l  
component being accounted f o r .  

Thus, approximate solut ions were detected (refs. 1 and 2) by Miele, 
whose a n a l y t i c a l  method (based on Green's theorem) avoided t h e  use of 
i n d i r e c t  v a r i a t i o n a l  procedures. The calculus  of var ia t ions  was also 
avoided i n  a paper by Lush (ref.  3 ) ,  with an i n t u i t i v e  graphical  method 
based on t h e  concept of  energy height. 

Concerning t h e  same problem, an a t t a c k  with t h e  i n d i r e c t  methods 
of t h e  calculus of var ia t ions  was attempted i n  references 4 t o  6. The 
r e s u l t s  obtained, however, are incomplete. In  f a c t ,  while t h e  t r u e  solu- 
t i o n  i s  discontinuous and generally formed of t h r e e  d i f f e r e n t  branches 
(dive; zoom; var iable  path inc l ina t ion  subarc),  t h e  authors of these  
references detected only one of the t h r e e  subarcs forming the extrema1 
arc ,  namely t h e  subarc flown with variable path inc l ina t ion .  Complete 
v a r i a t i o n a l  solutions,  on the other hand, were detected by Cicala and 
Miele (ref. 7) and by Lush ( r e f .  8). I n  recent  times, t h e  r e s u l t s  which 
Miele indicated i n  reference 1 were rederived by Cartaino and Dreyfus 
( ref .  9) along the  l i n e s  of the promising theory of dynanic programming, 
as developed by Bellman ( r e f .  10).  

Simplified Climbing Problem f o r  Rocket-Powered Aircraf t  

For a rocket-powered a i r c r a f t  the t i m e w i s e  v a r i a t i o n  of mass i s  
important and must be accounted f o r  i n  t h e  study of t h e  climbing perform- 
ances. His tor ica l ly ,  it i s  of i n t e r e s t  t o  not ice  t h a t  t h e  t h e o r e t i c a l  
development of new climbing techniques f o r  rocket -powered a i r c r a f t  pre-  
ceded t h a t  f o r  turbojet-powered aircraft. 

Of p a r t i c u l a r  i n t e r e s t  a r e  t w o  papers by Kaiser ( r e f .  11) and 
Lippisch ( r e f .  12) .  
pioneering development of jet-propelled a i r c r a f t  i n  Germany during World 
War 11. Even though they l e f t  t h e  bulk of v a r i a t i o n a l  questions asso- 
c i a t e d  with t h e  climbing f l i g h t  subs tan t ia l ly  unsolved, they threw con- 
s iderable  l i g h t  on a new c l a s s  of problems of the  mechanics of f l i g h t .  

Both works were c a r r i e d  out i n  connection with the  

I n  p a r t i c u l a r ,  it seems t h a t  i n  t h e  work by Kaiser ( r e f .  11) t h e  

concept of energy height h = h + - was first employed f o r  f l i g h t  

mechanics appl icat ions.  Lippisch ( r e f .  12), on t h e  other  hand, inves- 
t i g a t e d  t h e  accelerated climbing f l i g h t  under t h e  simplifying assumption 
t h a t  t h e  t o t a l  drag coef f ic ien t  

( e  3 
CD i s  constant along t h e  f l i g h t  path.  



4 

I n  recent years t h e  f ixed end-points problem w a s  re inves t iga ted  by 
Miele ( re f .  l3), under the  assumption t h a t  t h e  induced drag i s  negl igible  
with respect t o  the  z e r o - l i f t  drag. 
Green's theorem, i n  order t o  avoid some of t h e  a n a l y t i c a l  d i f f i c u l t i e s  
(solved i n  la ter  works) associated with t h e  use of t h e  i n d i r e c t  methods 
of t h e  calculus of var ia t ions .  

Miele's treatment was based on 

Invest igat ions of a More General Nature 

The inves t iga t ions  of t h e  sect ions on climbing f l i g h t  of m i n i m u m  
t i m e  o r  minimum f u e l  consumption were c a r r i e d  out under p a r t i c u l a r  hypoth- 
eses ,  whose e s s e n t i a l  a n a l y t i c a l  object ive was t o  s implify t h e  equation 
of motion on t h e  normal t o  t h e  f l i g h t  path.  By l i f t i n g  t h e  above l i m i -  
t a t i o n s ,  a more general  category of v a r i a t i o n a l  problems i s  or iginated.  
These problems (which can be i n d i f f e r e n t l y  formulated wi th in  t h e  frame 
of t h e  questions of e i t h e r  the Lagrange, Mayer, or Bolza type) a t t r a c t e d  
t h e  a t t e n t i o n  of Cicala and Miele ( r e f .  14), who made use of t h e  Mayer 
formulation i n  an i n i t i a l  note dealing with minimum t i m e  f l i g h t  paths.  
More general  problems of Mayer type were invest igated by Cicala i n  ref- 
erence 15 and Miele i n  reference 16. 

Problems of the  Lagrange type were t r e a t e d  i n  reference 1.7, which 
d e a l t  w i t h  brachis tocronic  paths and i n  reference 18, which d e a l t  with 
maximum range t r a j e c t o r i e s .  Both papers, however, must be considered 
as incorrect .  A s  a matter of f a c t ,  the  minimal conditions were s t a t e d  
without considering t h a t  the  equations of motion must be s a t i s f i e d  at 
a l l  points of t h e  f l i g h t  t r a j e c t o r y  and t h a t ,  as a consequence, they 
must appear as nonholonomic cons t ra in ts  i n  t h e  very formulation of a l l  
v a r i a t i o n a l  problems of  the  mechanics of f l i g h t .  

W 
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The  Lagrange formulation was a l s o  used i n  reference 19, which d e a l t  
with both t r a j e c t o r i e s  of m i n i m u m  t i m e  and of minimum f u e l  consumption. 
A parabolic drag polar with coef f ic ien ts  depending upon t h e  Mach number 
was assumed. After  eliminating the  l i f t  from the  equations of motion, 
t h e  nonholonomic cons t ra in t  t o  be s a t i s f i e d  a t  a l l  po in ts  of the  f l i g h t  
path was formulated i n  the  form 

f(h,V,t,e,i,m) - 1 = 0 

This formulation, however, i s  not as general  as t h e  one of reference 14, 
which i s  va l id  f o r  a l l  drag polars .  

A recent paper by F r a e i j s  de Veubeke ( r e f .  20) refers p a r t i c u l a r l y  
t o  t h e  problem of maximum range. 
i n  parametric form, the  paper considers several  possible  s implif icat ions * 
i n  t h e  ana ly t ica l  nature of t h e  drag function. 

After formulating the  equations of motion 



Object of Present Inves t iga t ion  
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With t h e  present  inves t iga t ion  t h e  work i n i t i a l l y  developed i n  
references 14, 15, and 21  i s  extended. General equations are presented 
descr ibing the  optimum paths i n  a v e r t i c a l  plane. These equations a r e  
considerably simpler than those of reference 19 and, therefore ,  more 
s u i t a b l e  for d i g i t a l  machine computations. The Mayer formulation, used 
i n  reference 16, i s  abandoned here i n  favor or t h e  perhaps more general  
formulation due t o  Bolza. The reason i s  t h a t  the  Bolza formulation 
appears t o  be more f l e x i b l e  than the Mayer one i n  connection with t h e  
s impl i f ied  ana lys i s  of c e r t a i n  spec ia l  types of f l i g h t  paths  of a i r c r a f t  
propel led by air-breathing engines. Problems of e i t h e r  t h e  Lagrange 
type o r  t h e  Mayer type are s tudied as p a r t i c u l a r  cases.  

A novelty of t h i s  paper i s  t h a t  t he  customary form of the  equations 
of  motion i s  modified by the introduction of a spec ia l  s e t  of constant 
coe f f i c i en t s  Ki ( i  = 1 . . . 8) whose value can e i t h e r  be zero or one, 
depending upon t h e  p a r t i c u l a r  simplifying hypotheses considered i n  solving 
a c e r t a i n  v a r i a t i o n a l  problem. I n  so doing a s ingle  s e t  of Euler equa- 
t i o n s  i s  wr i t ten ,  v a l i d  f o r  both the case where t h e  exact equations of 
motion are used and f o r  t he  case where p a r t i c u l a r  approximations are 
employed. 

Thus, t he  preliminary analyses ca r r i ed  out by Miele and Cappellari  
i n  references 22 and 23 a r e  pa r t i cu la r  cases of t h e  present  theory 
obtained by mzrely a t t r i b u t i n g  t o  the coe f f i c i en t s  Ki (i = 1 . . . 8) 
t he  set of values which corresponds t o  t h e  form of t h e  equations of 
mot ion.  

Furthermore, a bridge i s  establ ished between calculus  of va r i a t ions  
and ordinary theory of maxima and minima. It i s  shown t h a t ,  when the  
acce le ra t ion  terms are neglected, both approaches lead  t o  t h e  same r e s u l t s  
(refs.  24 and 2 5 ) .  I n  t h i s  connection, t h e  c ru i s ing  f l i g h t  of maximum 
range o r  of maximum endurance is invest igated f o r  constant a l t i t u d e  o r  
f o r  constant value of t he  cont ro l  parameter of a tu rbo je t  engine. Simple 
r e l a t i o n s  are obtained f o r  t h e  optimizing condition. Thus, t h e  w e l l -  
known r e s u l t s  of t he  low-speed f l i g h t  theory a re  extended t o  cover t h e  
case where an a r b i t r a r y  dependence between z e r o - l i f t  drag coe f f i c i en t ,  
induced drag coef f ic ien t ,  t h r u s t ,  spec i f ic  f u e l  consumption, and Mach 
number i s  considered. 

This inves t iga t ion  was conducted a t  Purdue Universi ty  under t h e  
sponsorship and with the  f i n a n c i a l  a s s i s t ance  of t h e  National Advisory 
Committee f o r  Aeronautics. 
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SYMBOLS 

a 

A1 

speed of sound, f t  S e C ' l  

funct ion defined by equation (91) 

A2 funct ion defined by equation (92) 

function defined by equation (93) 

funct ion defined by equation (105) 

*3 

B1 

function defined by equation (106) 

funct ion defined by equation (107) 

B2 

B3 

C spec i f i c  f u e l  consumption per  un i t  time and u n i t  t h r u s t ,  
sec-1 

C in tegra t ion  constant 

CD drag coef f ic ien t  

l i f t  coe f f i c i en t  cL 

D drag, l b  

F 

g 

fundamental funct ion defined by equation (14) 

acce lera t ion  of gravi ty ,  f t  sec-2 

G func t iona l  form whose d i f fe rence  E i s  t o  be minimized 
i n  a Mayer problem 

h f l i g h t  a l t i t u d e  above sea l eve l ,  f t  

H funct ion whose time i n t e g r a l  i s  t o  be minimized i n  a 
Lagrange problem 

J func t iona l  form t o  be minimized i n  a Bolza problem 

J1 . . . 58 f i rs t  members of t h e  equations represent ing cons t r a in t s  
of t h e  v a r i a t i o n a l  problem 

K r a t i o  of  induced drag coe f f i c i en t  t o  square of l i f t  
coef f ic ien t  

W 
1 
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,- 

K 1  . . . K8 dimensionless constants 

l i f t ,  l b  

instantaneous mass of a i r c r a f t ,  l b  ft'l sec2 

Mach number, V / a  

atmospheric pressure,  l b  ft'2 

r a t i o  of induced drag t o  z e r o - l i f t  drag, 

reference surface,  f t*  

time, sec 

t h r u s t ,  lb 

K C L ~ / C D ~  

v flight ve loc i ty ,  f t  sec-' 

ve equivalent e x i t  ve loc i ty  of rocket engine, f t  sec'l 

X exponent appearing i n  expression f o r  z e r o - l i f t  drag 
coe f f i c i en t  

X hor izonta l  dis tance,  f t  

Y coef f ic ien t  appearing in  expression f o r  z e r o - l i f t  drag 
coe f f i c i en t  

z 1  . . . z9 generic dependent var iables  

U cont ro l  parameter of j e t  engine 

P engine mass flow, l b  ft ' lsec 

Y r a t i o  of spec i f i c  heat a t  constant pressure t o  spec i f i c  
hea t  a t  constant volume 

6 ( .  . .) var i a t ion  cons is ten t  with prescr ibed end condi t ions 

7 r e a l  var iab le  defined by equation (ll), lb 1/2 

e path inc l ina t ion  with respect  t o  hor izonta l  plane 

h dimensionless parameter proport ional  t o  wing loading of 
a i r c r a f t  



Lagrange mul t ip l i e r s  

r e a l  var iab le  defined by equation (lo), l b  1/2 

r a t i o  of s t a t i c  pressure at a l t i t u d e  h t o  s t a t i c  pressure 

dimensionless parameter proport ional  t o  t h r u s t  loading of 

a t  the  tropopause, P/P, 

rocket -powered a i r c r a f t  

f irst  member of t h e  add i t iona l  constraining equation 

funct ion defined by equation (99) 

Superscript  : 

(3 der iva t ive  with respect  t o  t i m e  

Subscripts : 

i i n i t i a l  point  

f f i n a l  point 

- condi t ion immediately before a corner point  

W 
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+ condition immediately a f t e r  a corner point  

* condition at a l t i t u d e  of tropopause 

FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION 

The t r a j e c t o r i e s  considered i n  t h e  present repor t  are e n t i r e l y  con- 

The vector  acce lera t ion  of g rav i ty  i s  
ta ined i n  a v e r t i c a l  plane, t h a t  is ,  i n  a plane perpendicular t o  t h e  sur- 
face of the ear th ,  assumed f l a t .  
regarded a constant everywhere. 

The a i rp lane  i s  conceived as a p a r t i c l e  on which aerodynamic fo rces  
of symmetric type are ac t ing .  
a ted  f l i g h t ,  t h a t  is ,  by neglecting t h e  so-called aerodynamic lag .  
the re la t ionship  between l i f t  L and drag D i s  assumed t o  have t h e  
general  form 

The l a t t e r  are ca lcu la ted  as i n  unacceler- 
Thus, 

D = D(h,V,L) (1) . 
The power p lan t  considered here is  of a nonspecified type. The 

only  assumption made i s  t h a t  t h r u s t  T and mass flow of e i t h e r  f u e l  o r  
propellant p a re  specif ied,  though a r b i t r a r y ,  funct ions of t h e  form 

- 
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T = T ( h , V , a )  (2) 
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I n  the  above representation a i s  a var iable  def ining t h e  operating 
condition of the  engine and can be termed, f o r  instance,  cont ro l  parame- 
ter  o r  power se t t ing .  I ts  function i s  analogous t o  the one of t h e  accel-  
e r a t o r  pedal i n  a t y p i c a l  automobile. 
e x i s t i n g  types of engines, it i s  not convenient t o  specify t h e  a c t u a l  
physical  meaning of a t o  the  e f fec t  of developing a general  theory. 
A s  an example, however, t h e  a variable can be t h e  number of revolut ions 
of t h e  compressor-turbine group of a t u r b o j e t  engine having constant 
geometry; or t h e  pos i t ion  of the f u e l  cont ro l  lever;  or the  pressure i n  
t h e  combustion chamber of a rocket engine having f ixed geometry. 
a l l y  speaking, the  cont ro l  parameter a cannot assume any a r b i t r a r y  
value, but only those values f o r  which t h e  t h r u s t  i s  bounded between an 
upper l i m i t  and a lower l i m i t .  Assuming t h a t  t h e  l a t te r  i s  i d e a l l y  zero, 
the following inequal i ty  i s  t o  be added t o  equations (2)  and (3) i n  order  
t o  completely define the  behavior of t h e  engine 

I n  view of t h e  grea t  v a r i e t y  of 

Gener- 

Constraining Equations 

After  assuming t h e  t h r u s t  tangent t o  t h e  f l i g h t  path, t h e  following 
set of equations i s  considered2: 

J1 = ?  - V ( K 1  + K 2  cos 8 )  = 0 ( 5 )  

J2 = h  - V s i n 8  = O  (6) 

J? E 1;! + K B(h,V,a) = 0 a 
~~ ~~ ~~ 

*The constant coeff ic ients  K1, K 2  . . . K 8  a r e  introduced t o  
f a c i l i t a t e  the  der iva t ion  o f  simplified solut ions,  under p a r t i c u l a r  
hypotheses. 
lowing set of values: 

The exact equations of motion are associated with t h e  f o l -  
K1 = K 6  = 0, K2 = K3 = K 4  = K5 = K7 = K 8  = 1. 
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The inequal i ty  (4)  can be t r a n s l a t e d  i n t o  t h e  s e t t i n g  of t h e  var ia -  
t i o n a l  problem, by introducing two new real  var iab les  E and 7 satis- 
fy ing  t h e  f u r t h e r  cons t ra in ts  

56 E T(h,V,a) - E* = 0 (10) 

Clearly,  the e f f e c t  of t h e  cons t ra in ts  (10) and (11) i s  t o  reconduce 
the  a n a l y t i c a l  treatment of a v a r i a t i o n a l  problem involving i n e q u a l i t i e s  
t o  t h e  same mathematical model usefu l  i n  solving problems involving 
e q u a l i t i e s  . 

Additional Constraint 

The set  of seven equations ( 5 )  t o  (11) involves one independent 
var iab le ,  namely the  time t. There are nine dependent var iab les  X, 
h, V, 0 ,  m, L, a, 5, and 7. For t h e  case where t h e  t h r u s t  i s  
tangent t o  t h e  f l i g h t  path, therefore ,  t h e  problem of t h e  optimum t r a j e c -  
t o r y  embodies 2 degrees of freedom. 

Problems of a more l imited nature (involving 1 degree of freedom) 
can a l s o  be of engineering i n t e r e s t .  These problems a r i s e  i n  those cases 
where an addi t ional  cons t ra in t  of  t h e  form 

i s  considered. 
@ 0 - Const.; a nonl i f t ing  path by @ L; a path flown with constant 
value of t h e  engine control  parameter by @ = a - Const., e t c .  

A s  an example, a r e c t i l i n e a r  path i s  represented by 

PROBLEM OF BOLZA 

The functional form 

where t h e  terms G and H denote a r b i t r a r i l y  specif ied functions of 
the coordinates of t h e  vehicle ,  i s  now considered and t h e  problem of 
Bolza formulated. The la t te r  cons is t s  of f inding, i n  the c l a s s  

W 
1 
1 
8 
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of a r c s  X ( t > ,  h ( t ) ,  V ( t ) ,  e ( t ) ,  m ( t > ,  L ( t ) ,  d t ) ,  E ( t ) ,  and 
q ( t )  s a t i s fy ing  equations ( 5 )  t o  (12) and c e r t a i n  prescr ibed end condi- 
t i ons ,  t ha t  spec ia l  a r c  such t h a t  the func t iona l  form (13) i s  minimized. 

To solve the  above problem, a set of var iab le  Lagrange m u l t i p l i e r s  
h l ( t )  . . . h 8 ( t )  
fundamental funct ion,  formed 

i s  introduced and the  following expression, termed 

8 

F = H +  1 AKJK 
K = l  

where J1 . . . 58 denote, respect ively,  t h e  f i r s t  members of equa- 

t i o n s  ( 5 )  t o  (12) .  
Euler equations must be wr i t ten ,  as follows 

Since the  unknown funct ions a r e  nine i n  number, nine 

( J  = 1 . . . 9) (15) 

where z 1  = X, 22 = h, 23 = V, 24 = 8, 25 = m, 26 = L, 27 = a, 
28 = E, and 
indica ted  

z9 = 7 .  The e x p l i c i t  form of t h e  Euler  equat ions i s  noV 

K3j\3 = -hl(Kl  + K2 cos e) - A2 s i n  0 + -(- '3 aD - $) + - h4 - 
v2 m av 

a@ dH ha-+- 
dV av 

g~ s i n 0 + A 8 - +  do 
h 4 V  7 de 

K5,A4 = hlVK2 s i n  8 - h2V COS 0 + A K g cos 8 - 3 4  



1 2  

3 L d@ dH 
A 

- + - 
m m2v dm a m  

i 5  = T ( T  - D) + A4 - + 

The following general  remarks a r e  of i n t e r e s t :  
ident ica l ly  zero, t h e  Bolza problem reduces t o  t h e  Mayer problem. 
on the  other hand, t h e  G function i s  i d e n t i c a l l y  zero, then t h e  Bolza 
problem reduces t o  t h e  Lagrange problem (ref .  26); ( 2 )  i f  the  @ funct ion 
i s  not ident ica l ly  zero, t h e  v a r i a t i o n a l  problem admits one degree of 
freedom; i f ,  on the  other  hand, the  @ funct ion i s  i d e n t i c a l l y  zero, then 
t h e  number of degrees of freedom i s  increased t o  2; (3) an important 
mathematical consequence of the  s e t  of equations (16) t o  (24) i s  t h a t  

(1) If t h e  H funct ion i s  
I f ,  

(4 )  generally speaking, the s e t  of Euler equations (16) t o  (24) and of 
constraining equations (5) t o  (12) must be d e a l t  with by approximate 
integrat ion procedures. The main d i f f i c u l t y  stems from the circumstance 
t h a t  t h e  var ia t iona l  problems of t h e  mechanics of f l i g h t  a r e  boundary- 
value problems, t h a t  i s ,  problems with conditions prescribed i n  p a r t  a t  
t h e  i n i t i a l  point  and i n  p a r t  a t  t h e  f i n a l  point .  Thus, t h e  use of 
t r ia l -and-error  techniques is, i n  t h e  general  case, an unavoidable neces- 
s i t y .  A t  any r a t e ,  the  present set of equations appears t o  be much more 
s u i t a b l e  for d i g i t a l  computing calculat ions than the  set indicated by 
Behrbohm ( r e f .  19) o r  Carstoiu (ref.  27). 

Discontinuity of Eulerian Solution 

A s  the Euler equations (23) and (24) show, t h e  extrema1 a r c  i s  d is -  
continuous with regard t o  t h e  behavior of the  engine. I n  f a c t ,  it gen- 
e r a l l y  embodies subarcs of t h r e e  d i f f e r e n t  kinds: 

W 
1 
1 
8 

.. 
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The subarcs of equation (26) are flown by coasting; those of equa- 
t i o n  (27) a r e  flown w i t h  maximum engine output; and those of equation ( 2  ) 
zre general ly  flown wi th  a continuously var iable  t h r u s t .  The above r u l e ,  
however, admits several  exceptions. An important one i s  represented by 
the case where, because of the  ana ly t ica l  configuration of t h e  cons t ra in t  
Q = 0, t h e  behavior of the  engine i n  f l i g h t  i s  prescribed a t  the  onset 
(for instance,  constant value of the control  parameter In  such a 
case, t h e  aforementioned discont inui ty  disappears. 

a). 

When d iscont inui t ies  are present, the spec ia l  conditions due t o  
Erdmann and Weierstrass must be s a t i s f i e d  a t  a l l  corners of the  extrema1 
solut ion.  From the  theory of reference 26, one may s t a t e  the above con- 
d i t i o n s  as follows 

where the  subscript  ( ) -  denotes a condition immediately before a 
corner and t h e  subscript  ( )+ a condition immediately a f t e r  a corner. 

Transversali ty Condition 

The boundary conditions of possible v a r i a t i o n a l  problems are i n  
p a r t  o f  t h e  f ixed end-points type and i n  p a r t  of t h e  na tura l  type. The 
l a t t e r  must be deduced from t h e  following general  t r a n s v e r s a l i t y  condi- 
t i o n  ( ref .  26) 
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The above r e l a t i o n  i s  t o  be i d e n t i c a l l y  s a t i s f i e d  f o r  a l l  systems of 
var ia t ions  6 ( .  . .) consis tent  with the prescr ibed end condi t ions.  

F i r s t  I n t e g r a l  

I f  the two funct ions H and @ a r e  such that  

equation ( 2 5 )  admits the  f i r s t  i n t eg ra l :  

The cont inui ty  condition (34) i s  therefore  r ewr i t t en  as 

li = ( c ) +  ( 3 8 )  

Furthermore, t h e  t r a n s v e r s a l i t y  condi t ion (35) becomes - 

ROCKET TRAJECTORIES FLOWN WITH NEGLIGIBLE INDUCED DRAG 

A rocket-powered vehicle  i s  now considered. The cont ro l  parameter 
a i s  chosen i d e n t i c a l  with t h e  engine mass flow p. Thus, t h e  engine 
i s  represented by 



W 
1 
1 
8 

where t h e  equivalent e x i t  ve loc i ty  Ve and t h e  maximum t h r u s t  Tmax 
are regarded as constant,  independent of a l t i t u d e  and ve loc i ty .  

For K 1  = K 6  = 0,  K 2  = K 3  = K4 = K5 = K7 = K 8  = 1 equations ( 5 )  
t o  (9) are rewr i t ten  as follows 

jc - v COS e = o (43) 

D - uV, t +  g s i n  6 + = o  m 

g cos 6 L 
V mV 

Q +  - -  = o  

(45) 

I i l + u = O  (47) 

If t h e  induced drag i s  neglected, the t o t a l  drag D becomes i d e n t i c a l  
with the  z e r o - l i f t  drag Do. Since Do depends on a l t i t u d e  and ve loc i ty  
only, one has t o  w r i t e  that 
following consequences: 

D = D(h,V).  This circumstance l eads  t o  t h e  

(A)  The equation of motion on t h e  tangent t o  t h e  f l i g h t  path no 
longer i n t e r a c t s  w i t h  t h e  equation of motion on t h e  normal t o  t h e  f l i g h t  
path.  The la t ter ,  therefore ,  can be employed a p o s t e r i o r i  (once the 
v a r i a t i o n a l  problem has been solved) t o  p red ic t  t h e  mount  of l i f t  neces- 
sa ry  t o  maintain t h e  a i r c r a f t  on the  computed optimum path.  

(B) The Euler equation associated w i t h  t h e  l i f t  d i s t r i b u t i o n  i s  
considerably s implif ied,  insofar  as a drag funct ion D(h,V) implies 

dD 
dL 

t h a t  - = 0. 

Mayer Problem f o r  Constant Mass Flow 

If the engine i s  operated a t  a constant mass flow ( l a r g e r  than 0, 
but  l e s s  than Tmax/Ve) t h e  addi t ional  cons t ra in t  (12) i s  w r i t t e n  as: 

CD E a - Constant = 0 (48) 

Clearly,  t h e  two Euler equations (23) and (24) are solved by 
For a problem of Mayer type 
hq = 0. 

A6 = A7 = 0 .  
H I 0 t he  Euler equation (21)  leads  t o  

The remaining Euler equations are w r i t t e n  as follows: 
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A1 = 0 (49) 

A3 aD - -hl cos 8 - A2 s i n  8 + - - av A 3 -  

0 = hlV s i n  0 - h2V cos 8 + h3g cos 0 ( 5 2 )  

(53) 

Notice t h a t  equations (49) t o  (54) s p l i t  i n t o  2 noninteracting s e t s .  
This i s  due t o  the  f a c t  t h a t  t h e  m u l t i p l i e r s  A5 and A 8  a r e  present  
only i n  equations (53) and (54) .  The f i rs t  i n t e g r a l  (37) becomes 

hlV cos t3 + h2V s i n  8 + h3 - h5u = c (55) 

I n  turn ,  t h e  t r a n s v e r s a l i t y  condition (39) y ie lds  

b G  + h16X + A26h + h36V + A56m - C6tIf = 0 ( 5 6 )  
i 

thus indicating t h a t  it i s  not possible ,  i n  t h e  y e s e n t  ideal ized problem, 
t o  prescribe t h e  end values f o r  t h e  path i n c l i n a t i o n  0 .  

Problems not involving horizontal  distance.-  If the  G funct ion has 
the  form G = G(h,V,m,t) 
nate at one.of the two end points,  t h e  t r a n s v e r s a l i t y  condition (56) and 
t h e  Euler equation (49) y ie ld  

and if no condition i s  imposed on t h e  X coordi- 

A1 = 0 (57) 

everywhere. A s  a consequence, equation ( 5 2 )  s impl i f ies  i n t o  ( r e f .  16) 

W 
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The so lu t ion  a rc  is ,  therefore ,  discontinuous, being general ly  composed 
of v e r t i c a l  subarcs (dive or  zoom) 

cos e = 0 (59) 

and var iable-path inc l ina t ion  subarcs, along which 

h2V - h g  = o  (60 )  3 

After  computing the time der iva t ive  of equation (60) 

one may regard equations ( 5 0 )  , (51) , (60) , and (61) as l i n e a r  and homo- 
geneous ( f o r  A 1  = 0) i n  the mul t ip l ie rs  and the i r  der iva t ives .  Non- 
t r i v i a l  solut ions e x i s t  f o r  A,, h3, i2, i3 i f  

.- 

t h a t  i s ,  i f  

V 

1 aD s i n  8 - - - 
m av 1 

V -g 0 0 

= o  

Assume now t h a t  t h e  z e r o - l i f t  drag has t h e  form 

Consider, f o r  s implici ty ,  the  portion of the f l i g h t  path which i s  embedded 
i n  t h e  isothermal s t ra tosphere (a = Constant) .  Define the nondimensional 
quan t i t i e s  

r [ = -  P 
p* 



18 

where pw denotes s t a t i c  pressure a t  t h e  a l t i t u d e  h* of t h e  tropopause. 

From equations (63) t o  (66) one obtains  ( r e f .  22) 

T 
n =  

If t h e  re la t ionship  between z e r o - l i f t  drag 
i s  approximated as 

CDo = yMxe2 

c o e f f i c i e n t  and Mach number 

(68) 

W 
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( y  and x being appropriate constants) equation (67) modifies i n t o  

7 
r [ =  

yMx(l + x + yM2) 

Notice t h a t  t h e  r e s u l t s  expressed by equations (63), ( 6 7 ) ,  and ( 6 9 )  > 
are va l id  f o r  a l l  Mayer problems of the  form 
ular ,  they hold f o r  the  following cases: 
technique G = t; (2)  climbing technique of m a x i m u m  ve loc i ty  increase 
G = -V; ( 3 )  climbing technique of maximum a l t i t u d e  increase G = -h. 

G = G(h,V,m,t). I n  p a r t i c -  
(1) Brachistocronic climbing 

Notice a l so  t h a t ,  f o r  a constant engine mass flow, t h e  f l i g h t  time 
i s  proportional t o  t h e  propellant consumption. 
brachistocronic climbing maneuver i s  i d e n t i c a l  with t h e  climbing maneuver 
which m i n i m i z e s  the  propel lant  consumption. 

A s  a consequence t h e  

APPROXIMATE COMFUTATION OF FLIGHT PATHS OF TURBOJET-POWERED 

AIRCRAFT BY NEGLECTING CENTRIPETAL ACCELERATIONS 

An i n t e r e s t i n g  approach t o  t h e  optimum climbing t r a j e c t o r y  of a 
turbojet-powered a i r c r a f t  can be developed by means of t h e  following 
s implif icat ions:  
i n  a i r c r a f t  weight due t o  f u e l  consumption are neglected; ( 3 )  weight com- 
ponent on t h e  normal t o  t h e  f l i g h t  path i s  assumed i d e n t i c a l  with 

(1) Centr ipetal  accelerat ions are neglected; (2)  changes 

mg. .. 
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The above hypotheses are ref lected i n  t h e  following choice f o r  t h e  
set of constants  appearing i n  equations ( 3 )  t o  (9) : 

K1 = K? = K7 = K8 = 0 (70) 

The constraining r e l a t ionsh ips  a re ,  therefore ,  rewr i t ten  as follows: 

jc  - v COS 

h - v sin 8 

e = o 

= o 

(72) 

(73) 

t + g sin e + D-T = o (74) rn 

I i = O  (76) 

With regard t o  t h e  mode of operation of t h e  engine, it i s  assumed t h a t  
a conveniently se lec ted  cont ro l  parameter a, i s  constant during f l i g h t  

9 G a - Constant = 0 (77) 

I n  view of equation (77), t h e  two Euler equations ( 2 3 )  and (24) 
a re  solved by h6 = h 0. The remaining Euler equations s p l i t  i n t o  

two noninteract ing sets, t he  e s sen t i a l  one being supplied by equa- 
t i o n s  (16) t o  ( l 9 ) ,  rewr i t ten  here as  follows: 

7 =  

' dH A - -  
- ax 

A3 = -AI cos e - h sin 8 + -- %(do - - dT) + -  a H  
2 m av a V  

(81) 
dH 0 = hlV s i n  e - h2V cos 8 + h3g cos 8 + - de 

Assuming t h a t  H i s  independent of t, t h e  f i rs t  i n t e g r a l  (37) y i e lds  
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Furthermore, t h e  t r a n s v e r s a l i t y  condition (39) leads t o  

[“G + h16X + h26h + A36V - Cat]: = 0 

Mayer Problems Not Involving Horizontal Distance 

If H 0, if t h e  G funct ion has t h e  form G = G(h,V,t), and i f  no 
condition is  imposed on t h e  X var iable  at  one of the  two end points ,  t h e  
t r a n s v e r s a l i t y  condition (83) and the  Euler equation (78) y i e l d  

11 = 0 ( 8 4 )  

everywhere. 
t i o n  (58), thus  ind ica t ing  t h a t  a discontinuous solut ion occurs. The 
extrema1 arc is composed of subarcs obeying equation (59) and subarcs 
obeying equation ( 6 0 ) ,  along which 

A s  a consequence, the  Euler equation (81) reduces t o  equa- 

0 

1 

l v  -g 0 0 

0 V -g 

The development of equation (85) leads t o  

W 
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. 

= o  

G = G(h,V,t), a r e l a t i o n  which holds for a l l  problems of t h e  form 
regardless  o f  t h e  end conditions. 
brachistocronic climbing program, f o r  which G 5 t. 

In  p a r t i c u l a r ,  it holds f o r  t h e  

Turbojet engine operating i n  isothermal stratosphere.-  It i s  now 
assumed that a turbojet-powered a i r c r a f t  is  f ly ing  i n  t h e  isothermal 
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stratosphere? and t h a t  t he  engine i s  operated i n  such a way t h a t  

T = Y C T * ( M , ~ )  (87) 
P where T* denotes t h r u s t  at t h e  tropopause and II = -. For a parabol ic  

drag polar  t he  drag coe f f i c i en t  CD i s  supplied by 
p* 

where K i s  t h e  so-called induced drag f ac to r .  A s  a consequence, t h e  
t o t a l  drag becomes 

2KL2 D = z C D ~ P S M ~  + - 
YPSS 

2 

From equations (86), (871, and (89) considerable manipulations y i e ld  the  
following e x p l i c i t  so lu t ion  (ref.  23) for t h e  optimum pressure-a l t i tude  
re la t ionship .  

where 

%(l + yM2 - log ") 
d log M A1 = 

CmM2 
= T ( 3  + rM2 + 

d log M 

a log M 
(93) 

(94) 

?The speed of sound is ,  therefore,  a = Constant everywhere. 
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Lagrange Problems Not Involving Time and 

Not Involving Horizontal  Distance 

Assume now t h a t  G 0, H = H(h,V,a) and t h a t  both time and ho r i -  
zonta l  distance are f r e e  of choice. 
and t h e  Euler equation (78) y ie ld  

The t r a n s v e r s a l i t y  condition (83) 

A 1 -  - o ; c = o  (95 )  

while the f i rs t  i n t e g r a l  (82) reduces t o  

I n  t u r n ,  equation (81) leads  once more t o  a discontinuous solut ion,  t h a t  
is ,  t o  a so lu t ion  composed of subarcs 
var iab le  path inc l ina t ion  subarcs 

cos 0 = 0 (dive o r  zoom) and 

h2V - h3g = 0 (97)  

Along the l a t t e r ,  t he  Lagrange mul t ip l i e r  A2 t akes  t h e  form 

1 A* = - 
$ 

where 

(T  - D ) V  
4 ! =  Hmg (99) 

From equations (79), (98), and (99), t he  mul t ip l i e r  A2 can be e l i m i -  
nated leading t o :  

Regardless of t h e  end conditions,  t h e  above r e s u l t  holds i n  a l l  t he  cases 
where the func t iona l  form t o  be minimized i s  of t h e  type 

J E L t f  H(h,V,a)dt 
i 

F 
1 
J 

t 
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It holds,  i n  p a r t i c u l a r ,  fo r :  

(1) H = p (climbing maneuver of minimum f u e l  consumption); 

(2)  H = 1 (climbing maneuver o f  minimum time); 

(3) H V (climbing maneuver o f  minimum increase i n  cu rv i l i nea r  
absc issa  assoc ia ted  with t h e  f l ight path; t h i s  maneuver can be regarded 
as almost i d e n t i c a l  with the  so-called s teepes t  climb, i f  t h e  i n c l i n a t i o n  
8 i s ,  on t h e  average, s m a l l ) .  

Turbojet engine operat ing i n  isothermal s t ra tosphere.-  The problem 
of minimum f u e l  consumption i s  now considered. 
the  func t iona l  form (101), where 

It cons i s t s  of minimizing 

I n  t h e  above expression c 
of f u e l  consumed pe r  u n i t  time and uni t  t h r u s t .  
isothermal s t ra tosphere,  a t h r u s t  function of the  form (87) and a s p e c i f i c  
f u e l  consumption func t ion  of t h e  form 

i s  the  spec i f i c  f u e l  consumption, t h e  weight 
I n  connection with an 

a r e  assumed. 
mental equation (100) can be e x p l i c i t l y  solved i n  terms of t he  pressure 
r a t i o ,  yielding ( ref .  23) 

For a parabol ic  drag polar obeying equation ( 8 9 ) ,  t h e  funda- 

where 

B3 = s(l- a log  c* ) 
mg d log  M 
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QUASI-STEADY MAYER PROBLEMS FOR CONSTANT ALTITUDE 

A quasi-steady problem i s  defined as any problem i n  which t h e  
i n e r t i a  terms appearing i n  the equations of motion are neglected.  

It is t o  be noted tha t ,  while a nonsteady point  of view i s  gener- 
a l l y  indispensable f o r  a cor rec t  ana lys i s  of t h e  f l ight  paths  of rocket-  
powered vehicles,  t he  quasi-steady approach i s  s t i l l  usefu l  i n  a number 
of pa r t i cu la r  cases, such as the study of range and endurance of a 

i s  t o  be s t ressed:  K3-0, 
Kcj-90) to  r e s u l t s  which a re  i d e n t i c a l  with those of fe red  by the o rd i -  
nary theory of  maxima and minima i n  the  study of t h e  so-called poin t  
performances of an a i r c r a f t  ( r e f .  24). I n  t h i s  sense, the  quasi-steady 
problems of t he  Mayer type must be regarded as an a n a l y t i c a l  attempt t o  
bridge t h e  gap between t h e  more sophis t ica ted  va r i a t iona l  methods and 
the less sophis t icated techniques of the  ordinary theory of maxima and 
minima. 

turbojet-powered a i r c r a f t .  I n  t h i s  connection, the following concept W 
1 
1 
8 

the calculus  of var ia t ions  leads4 ( f o r  

If the f l i gh t  path develops a t  constant a l t i t u d e ,  t he  add i t iona l  
constraint  (12) i s  represented by 

A s  a consequence, for 
t h e  equations of motion a r e  rewr i t ten  as follows: 

K1 = K3 = K3 = K6 = 0,  K2 = K 4  = K7 = K8 = 1 

i - v = o  (109) 

L(D - T)  = 0 m 

With regard t o  t h e  Euler equations, t he  so lu t ion  T = 0 i s  excluded, 
because it i s  not consis tent  w i t h  equation (111). 
p o s s i b i l i t i e s  a re ,  therefore ,  e i t h e r  the so lu t ion  T = Tmax or 
t he  var iable- thrust  solut ion For a Mayer problem 

The two remaining 

h6 = h7 = 0 .  

IcAnalytically, one has t o  s e t  K K = 0 i n  equations (7) and (8).  3 =  5 
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H 
se t  of Euler equations: 

0, t h e  l a t t e r  so lu t ion  i s  determined by t h e  following s i g n i f i c a n t  

i1 = 0 ( 114 ) 

A aD a P  
5 %  

0 = -A1 + 2(- - 3z) + A 
m av 

A = h 4 -  L 
2 n v  5 

which admits t h e  f i rs t  i n t e g r a l  

AIV - A  p = c 5 

The t r a n s v e r s a l i t y  condition (39) is  r ewr i t t en  as 

[ 6 ~  + A ~ ~ X  + A56m - c ~ t ] ;  = o 

Problems Where No Time Condition Is Imposed 

If t h e  G funct ion has t h e  form G = G(X,m)  and i f  no t i m e  condi- 
t i o n  i s  imposed a t  one of t h e  two end poin ts ,  t h e  t r a n s v e r s a l i t y  condi- 
t i o n  (120) l eads  t o  

A s  a consequence, equations (ll5), (118), and (119) can be regarded as 
l i n e a r  arid homogeneous i n  A1, A3, and ?~,5. Nontr ivial  so lu t ions  exis t  
f o r  t h e  m u l t i p l i e r s  i f  

1 
dv 

V 0 -P 

= o  
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t h a t  i s ,  if I 
a log a 

A f t e r  observing t h a t  p = cT/g, equation (123) i s  a l s o  rewr i t ten  as 

d log  c a log D 7  + a log c 
a log a a log  v a log v j  a log  a 

a log D = - (124) ] 
leading t o  

f o r  an ideal  power plant  such t h a t  
obeying equation (89) t h e  logarithmic der iva t ive  of t h e  drag with respect  
t o  t h e  veloci ty  takes  t h e  form 

ac/& 2 0, bT/& # 0. For a polar  

(126)  

log  ‘DO + R -2 + d log K 
a log D - d log  M ( d log  M 

(3 log v 1 + R  

2 +  
- 

I f ,  following a transformation of coordinates from t h e  V , h , a  space i n t o  
t h e  M , r r , a  space, the  s p e c i f i c  f u e l  consumption i s  conceived as 
c = c(M,lr,u), equations (125) and (126) y i e l d  

A s  a consequence, t h e  optimum Mach number is  supplied by 

When t h e  Mach number der iva t ives  of c, CDo, and K are i d e a l l y  zero, 
equations (127) and (128) reduce t o  

W 
1 
1 
8 
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R = -  1 
3 

w 
1 
1 
a 

I -  
I .  

t h a t  i s ,  t o  the  well-known optimum conditions of t h e  quasi-steady f l i g h t  
theory (ref.  28). 
of t he  form In  par t icu lar ,  they  hold f o r  t h e  maximum range 
problem G = -X. 

Notice t h a t  t h e  above r e s u l t s  hold f o r  a l l  problems 
G = G(X,m). 

Problems Where No Condition Is Imposed on 

Horizontal Distance 

If the  G funct ion has the  form G = G ( t , m )  and i f  no condition i s  
imposed on the  horizontal  dis tance a t  one of t h e  two end poin ts ,  t h e  
t r a n s v e r s a l i t y  condition (120) and the  Euler equation (114) lead  t o  

A1 = 0 

everywhere. 
as l i n e a r  and homogeneous i n  h3 and h5. Nontr ivial  so lu t ions  exist 
f o r  t h e  mul t ip l l e r s  i f  

A s  a consequence, equations (115) and (118) can be regarded 

= o  

t h a t  is ,  i f  

After introducing the  spec i f i c  f u e l  consumption 
i s  r ewr i t t en  as 

c = Pg/T, equation (133) 

log D) + d log c(" log  D - a log  T ) = O  (134) a log  v d log a a log  v a log  v 
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leading t o  

= o  a log( cD) 
a log v (135) 

f o r  an idea l  power p l an t  such t h a t  ac 2 0, aT/& # 0. Assume now 
t h a t  t h e  drag polar  obeys equation (89 I and t h a t  the,  s p e c i f i c  f u e l  con- 
sumption is conceived as c = c(M,n,a). Equation (135) consequently 
suppl ies  the optimum r a t i o  of induced drag t o  z e r o - l i f t  drag 

a hZ(ccD0) 

d log  M 

d log( cK)  

a log  M 

2 +  
R =  

2 -  

In  tu rn ,  the optimum Mach number i s  t o  be cons is ten t  with t h e  equation 

a log M 

JI a log(  cK)  
a log M 

2 -  
(137) 

When t h e  Mach number der iva t ives  of  c, CDo, and K are i d e a l l y  zero, 
t h e  above expressions simplify i n t o  

R = l  ( 138) 

I 

leading t o  t h e  well-known r e s u l t s  of t h e  low-speed f l i g h t  theory (ref.  29). 
It should be noticed t h a t  t h e  r e s u l t s  of t h i s  sec t ion  hold f o r  a l l  prob- 
lems of the form 
maximum endurance problem G = -t. 

G = G ( t , m ) .  A s  a consequence, they a l s o  hold f o r  t h e  

QUASI-STEADY MAYEX PROBLEMS FOR CONSTANT CONTROL PARAMETER 

W 
1 
1 
8 

I n  the present  sec t ion  Mayer problems H = 0 of  t h e  quasi-steady 
type are investigated,  under the  assumption t h a t  t he  engine cont ro l  
parameter a, i s  kept constant during f l i g h t .  Thus, t h e  add i t iona l  con- 
s t r a i n t  (12)  i s  spec i f ied  as 

- 
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Furthermore, it i s  assumed t h a t  t he  slope of t h e  t r a j e c t o r y  i s  so gent le  
t h a t :  (1) Kinematic re1ation:hip between hor izonta l  dis tance,  time, and 
ve loc i ty  i s  approximated as X - V = 0; (2)  weight component on t h e  tan- 
gent t o  t h e  f l i g h t  path i s  neglected; (3) weight component on t h e  normal 
t o  t h e  f l i g h t  path i s  i d e n t i c a l  with mg. 

The following set of values i s  consequently chosen f o r  t he  numerical 
constants  appearing i n  equations (7)  t o  (9) 

so t h a t  t h e  constraining equations are  rewr i t ten  as 

d - v s i n  e = o (144) 

L ( D  - T )  = 0 (145 1 m 

m + P = O  (147) 

With regard t o  the  Euler equations, t he  conditions 
t o  t h e  following system 

h6 = A7 = 0 lead  

i1 = 0 

2 O = A  

L i - A  5 -  4x 



dD 
0 = h 3 - - -  hL V 

a d m i t t i n g  the  f i r s t  i n t e g r a l  

hlV - h5P = c 

The t r ansve r sa l i t y  condition i s  indicated as 

Problems Where !io Time Condition Is Imposed 

If the G function has  t h e  form G = G(X,m)  and i f  no time condi- 
t i o n  i s  imposed a t  one of t h e  two end points ,  t he  t r a n s v e r s a l i t y  condi- 
t i o n  (156) leads  to :  

c = o  (157) 

A s  a consequence, equations (149) , (150) , and (155) can be regarded as 
l i n e a r  and homogeneous i n  hl, h3, and h5. Nontr ivial  so lu t ions  e x i s t  

f o r  t h e  mul t ip l ie rs  i f  

= o  

t h a t  i s ,  i f  

a log  T a log D)(I  - a log p) + ?I log  B(a log T - a log  D 

(159) 
( -  a log  h d log  h d log V d log h a log V log V 

After introducing the  spec i f i c  f u e l  consumption 
the  pressure r a t i o  J[ 

h, equation (159) i s  rewr i t ten  as 

c = pg/T and considering 
as a dependent var iab le  i n  place of t h e  a l t i t u d e  
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d log c a log D 
a log v a log Yr a log v a log  v 

- a log D )  + a log T (. - - 

Turbojet engine operating i n  isothermal s t ra tosphere.-  An i d e a l  
a i r c r a f t  is now considered with t h r u s t  T obeying equation (87), spec i f ic  
f u e l  consumption c obeying equation (lO3), and drag D obeying equa- 
t i o n  (89). Reference i s  made t o  t h e  isothermal region of t h e  s t ra tosphere 
a = Const., i n  which the  logarithmic der iva t ive  of t h e  drag with respect  
t o  t h e  pressure r a t i o  i s  given by 

a l o g D - 1 - R  
a l o g n  1 + R  

-- 

After simple manipulations, equation (160) y i e l d s  t h e  optimum r a t i o  of 
induced drag t o  z e r o - l i f t  drag 

R =  

2 +  a log(CD~T*) 
d l o a  M - 

b -  a log(Kc,2T,) 

d log  M 

so t h a t  t h e  optimum Mach number i s  t o  be consis tent  

,- 'Do 
0 -  a log M 

4 -  a log M 

For t h e  p a r t i c u l a r  case where t h e  Mach number der ivat ives  of 
c*, and T, a r e  i d e a l l y  zero, the  above r e l a t i o n s  lead t o  

C D ~ ,  K, 

1 R = -  
2 



t h a t  i s ,  t o  the  well-known formulas Of t h e  low-speed f l i g h t  theory 
( ref .  28).  
t i o n  hold f o r  a l l  problems of t h e  form 
f o r  t h e  maximum range problem G = -X. 

It i s  t o  be emphasized t h a t  t h e  r e s u l t s  of t h e  present sec- 
G = G(X,m) and, therefore ,  a l s o  

Problems Where No Condition Is Imposed on 

the Horizontal Distance 

I f  the G function has t h e  form G = G ( t , m )  and if no condition i s  
imposed on the  horizontal  dis tance a t  one of t h e  two end points ,  t h e  
t r a n s v e r s a l i t y  condition (156) and t h e  Euler equation (148) lead  t o  
A1 = 0 everywhere. 
following form f o r  t h e  optimizing condition: 

The two Euler equations (149) and (150) y i e l d  t h e  

t h a t  i s ,  

(167) 
a log D a log T d log D - a log T - a log h a log d log V a log 
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After introducing t h e  s p e c i f i c  f u e l  consumption c and the  pressure 
r a t i o  II, equation (167) i s  rewri t ten as 

Turbojet engine operating i n  isothermal s t ra tosphere.-  After con- 
s ider ing equations ( 8 7 ) ,  ( 89), and (lO3), equation (168) can be solved 
i n  terms of the r a t i o  of induced drag t o  z e r o - l i f t  drag: 

2 +  ’ log (‘DolT*) 

2 -  - a log M 
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The optimum Mach number must s a t i s f y  the  equation 

4 -  a log  M - -  2T* - CDoM2 

Y P*S a log(KT*c**) 
2 -  a log  M 

When t h e  Mach number der iva t ives  of Cm, K,  T*, c* are zero, t he  
above expressions reduce t o  

R = l  (171) 

implying t h a t  t h e  optimum operat ing a l t i t u d e  i s  i d e n t i c a l  with t h e  theo- 
r e t i c a l  c e i l i n g  of t he  a i r c r a f t  ( ref .  24).  
r e s u l t s  hold f o r  a l l  problems of t h e  form 
a l so  f o r  t h e  m a x i m u m  endurance problem G = -t. 

Notice t h a t  t h e  present  
G = G ( t , m )  and, therefore ,  

CONCLUSIONS 

A general  thevry i s  presented for  analyzing minimal maneuvers of 
high-performance a i r c r a f t  i n  a v e r t i c a l  plane.  

The Bolza problem cons is t ing  of t h e  simultaneous opt imizat ion of 
t he  angle-of-attack program and of the t h r u s t  program i s  considered. 
With regard t o  t he  general  case, t h e  in t eg ra t ion  of t h e  set of Euler 
equations and constraining equations i s  t o  be performed by approximate 
methods. In  view of t he  f a c t  t h a t  the v a r i a t i o n a l  problems of engineering 
i n t e r e s t  a r e  boundary-value problems, t h e  use of t r ia l -and-er ror  proce- 
dures i s  i n  order .  

Under p a r t i c u l a r  assumptions, however, so lu t ions  i n  a closed form 
can be derived f o r  t h e  optimizing condition. A s  an example, problems of 
Idayer type o r  of Lagrange type are invest igated by neglec t ing  either t h e  
induced drag o r  t h e  c e n t r i p e t a l  accelerat ion.  P a r t i c u l a r  a t t e n t i o n  i s  
devoted t o  t h e  climbing technique of minimum time o r  of minimum f u e l  
consumption f o r  turbojet-powered a i rcraf t  and rocket-powered a i r c r a f t .  
An e x p l i c i t  r e l a t ionsh ip  i s  obtained between a l t i t u d e  and Mach number, 
which bypasses the  use of t he  so-called energy-height method, 
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Mayer problems of t h e  quasi-steady type a re  a l so  considered i n  con- 
nect ion with f l i g h t  pa ths  of maximum range o r  m a x i m u m  endurance f o r  
turbojet-powered a i r c r a f t .  The optimizing condition i s  evaluated f o r  
a r b i t r a r y  dependence between z e r o - l i f t  drag coe f f i c i en t ,  induced drag 
f a c t o r ,  t h r u s t ,  spec i f i c  f u e l  consumption, and Mach number. An important 
l i n k  i s  es tab l i shed  between calculus  of va r i a t ions  and ordinary theory 
of maxima and minima; it i s  shown t h a t ,  f o r  t h e  quasi-steady problem, 
both approaches lead  t o  the  same r e s u l t s .  

I 

Purdue University, 
Lafayette,  Ind., Ju ly  25,  1958. 
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